Posted on 15/05/2016 at 23:20

Elvira : Rebuilding the 36hp, part 4 : Solex 28 PCI

episode 4 : Solex 28 PCI Carburetor
Just to change things a little bit, I decided to take care of my carburetor next, Histoire de passer un peu à autre chose, je m'occupe de mon carburateur, le petit Solex 28 PCI.
After 57 years, it was long overdue for a rebuild...
Solex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW Beetle
Actually, I just found out about a cleaning method on a vintage motorbikes forum : they clean their carbies by putting their parts in boiling lemon juice, directly in a sauce pan! And I have to say, I was pretty amazed by the results!

So I tried the same approach, but using my ultrasound tank, filled up with 6 bottles of lemon juice, heated all the way up to 80°C! icone smiley laugh
So after I disassembled the Solex, I let it soak in for 3 ultrasonic rounds of 20 minutes, after which I rince everything in clean water (ideally it'd have to be warm to avoid thermal shock) in order to remove any remaining acidity left by the lemon juice... Then a quick blow dry. I immediatly lube the rotating parts to avoid any oxidization...
Solex 28 PCI carburetor 1959 VW Beetle
And the result is pretty neat! icone smiley wink
I think the ultrasound are pretty useless here, being dampened by the particles in suspension in the lemon juice ; but they still help agitating the whole thing, and it probably helps.
I reassemble the carb with a renovation kit - all the gaskets were dry, the accelerator pump diaphragm completely rigid... It was time to do something about it.

But obvisously, everything was going fine. Too fine. So as I was reinstallint the jet on the emulsion tube, lightly tightening it as I know it a fragile part... Crack. F*ck me.
Fortunately, this emulsion tube can be bought NOS online on eBay in Italy... So 10 days later, here we go again, I replace the cracked tube... (note : there's an alternative to the NOS tube : one can buy a brass made replica at Bob Services : thanks SebCore for the info!)
To extract the tube, I first tap it with an M3 tap, pull.... But only the brass part comes. Second try, I tap the remaining tube with an M5 tap, pull it... And this time it's out. Yes!

The new tube is inserted after heating the carb body with a heat gun (on "low", be gentle!). The tube itself is cooled down with a couple of squirts of brake cleaner fluid + compressed air blow. It's not settling in that easy, so it took some convincing with a small hammer and a drift punch, the carb being held in the vice. Again, gently!
Solex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW Beetle
Solex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW Beetle
Solex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW Beetle
Now I only had to put everything back together with new gaskets, replacing as well the small metal pins on the linkage, with were prone to breaking due to their age.
Solex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW BeetleSolex 28 PCI carburetor 1959 VW Beetle
And there you go, a new-ish carb!
It directly goes into a plastic bag, waiting for the holy day it will make my engine come back to life...
Posted in : 1959 Beetle
Displayed 77822 times.
icon permalink
Posted on 07/04/2016 at 22:58

Krapo Bleu : Engine Swap!

Engine Swap!
If you're a regular on this blog, you've already heard about "Krapo Bleu" (that would translate as "Blue Toad"), my daily driver for almost 19 years now (ouch, I'm not getting any younger, am I?) : a 1988 Golf Mk2, edition 10 Millionen (or "Champ" for the French market).

As I said in my November 2013 article, its angine was starting to seriously wear out (270.000km... and I'll have to admit, I did not always take good care of it!), eating more and more oil (like a liter a month!), used to leak water, overheat... It was high time to do something about it, and finally take care of my "old friend" that helped my so many times, before I actually end up stuck on the side of the road with a broken engine.

After spending a year looking for the right engine, I finally found in may 2014 a block on LeBonCoin (the equivalent of Craig's List in France), for 200€. It wasn't that easy, as several times people tried to sell me broken engines, with broken timing belt (the valves-in-pistons kind) or blown head gaskets...
This engine is strictly identical to the original one (OK, I know, therefore the term"engine swap" may not be appropriate : sue me!) : 1.8L, 90hp, Pierburg 2E2 carburetor, but scoring "only" 130.000km (barely broken in, right? icone smiley wink). Enough to give my old car a breathe of fresh air.
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
This engine will wait a little over a year before I finally get some time in my hands to get it in the car.
I've used that year to completely clean the engine, changed lip seals and head cover seal, etc...

It's already July 2015 when I head up to Laurent's (Dangerous) to use his hoist, car lift and roomy workshop (which is a much easier way than using a jack in an underground one car garage!)

So there I go, starting with removing the whole front mask of the car, all the accessories, strapping the gearbox... And the engine comes out easily(-ish)!
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
At this point in time, my Golf has its engine out, my Beetle's 36hp is still not finished, and the Karmann's engine is not even closed yet... Not very reassuring!

With the engin out, I had room to clean the whole engine compartment from the 27 years of stratified gunk.
Up to this point, everything's going as planned ; with a bit of organisation, it's even simpler than it looks.
Now is time to get the new engine in (after I transferred on it the carb, clutch, flywheel, exhaust manifold, and a couple of things more) : it goes pretty swiftly, except for the exhaust clamps that are a PITA to install when you don't have the specific tool. Nothing a ratchet strap can't fix, though (#ratchetstrappower).
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp


And... That's when things went sour... Argh, why is nothing ever simple! icone smiley laugh


1st start : the engine starts right on, that's the good news! In the other hand, an heavy water leakage appears on the side of the engine, Bellagio fountains like. Probably because the engine got a shock while being stock or transported (that's highly probable, I had nothing to strap the black in the rental truck, it was a bump ride!)...

I've been told that "when you've got a mechanical problem, the best solution is to do mechanics" (is it Confucius or Plato, I can't remember?) : we get the head out, and put it on the mill, fearing it may have warped. The joint plane is cleaned with only 12/100th of mm, so no, the head was fine, and it can go back on the engine with a new head gasket. Let's give it another try!
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
2nd start : this time, the intake manifold leaks water (water goes through it to heat up the carb)... It's not the Bellagio any more, but still a solid Manneken-Pis.
I take the intake manifold out, order new gaskets, reinstall everything with sealing compound, making sure it's tight...
I'll have to admit, from this point on, I took way less pictures, I was too busy to play the paparazzi! icone smiley smile

3rd start : intake manifold still leaking. Less than the first time, but still leaking anyway.
Re-removing it, re-reinstalling it with again new gaskets and compound...

4th start : the manifold is not leaking anymore! Alleluia!!!
But now, I have a water leakage on the side of the block, behind the timing belt cover... Once again, we remove the distribution, to find out it's a bloody core plug! Has anyone seen this before?? It's not an heavy leak, more like a fast drip, but still...
So we find a new core plug, extract the old one, install the new... And here we go again.
Engine swap Golf mk2 1988 1L8 1.8 GU 90hpEngine swap Golf mk2 1988 1L8 1.8 GU 90hp
5th start : the engine is not leaking anymore!!! Woohooo!!!
.
.
.
But the radiator is. HOLY MOTHER OF FUUUUUUUUU...!!!! icone smiley sad

I mean, not much, a slow drip, but it's leaking nonetheless. It didn't like being taken off... Classic.
Long story short, I order a new radiator, purge the coolant for the Nth time, replace the radiator....

6th start : IT IS NOT LEAKING ANYMORE! At all! Woooohooooo!!!
I was about to call that car "Pissing Bitch" instead of "Krapo Bleu"! icone smiley laugh

In the end, the operation that was supposed to take us 3 days took 3 weeks (counting the ordering parts back and forth). Oh joy!
A huuuuuuuuge thank you to Laurent/Dangerous for his help, his time... And his workshop that I made a total mess of pouring so much coolant everywhere!

As you can guess, I still had some work to do after this, as the bloody Pierburg 2E2 carb never misses an occasion to act up... It was working perfectly before, but it has a few hiccups : some air intake (even though the flange is brand new), the choke doesn't work any more, etc...
In short, it needed a bit more tinkering around to get it to work neatly : changed the choke dilatation element, put a thin film of sealing compound on the carb flange, changed the head cover gasket that was leaking oil (it was brand new too...), replaced the 3 temperature probes...

But here it is, finally! Working as if it was new! Well, almost! icone smiley laugh icone smiley laugh icone smiley laugh
Posted in : 1988 Golf MkII
Displayed 96742 times.
icon permalink
Posted on 07/02/2016 at 18:11

Elvira : Rebuilding the 36hp, part 3 : Closing the engine

Sorry! This article has not yet been translated in english! Please come back later!


part 3 : Closing up the engine case
QUATRE ANS! Quatre ans que j'attendais que les astres s'alignent pour le fermer ce bloc! E N F I N !!!

Carter moteur

Contrairement à ce que j'annonçais dans mon précédent post (en mars 2012...) sur le sujet, la métrologie du bloc n'était en fait pas si bonne.
En la reprenant à tête reposée avec mon nouveau matériel, je me suis aperçu que les paliers vilo étaient hors-cote ovalisation. Pas de beaucoup, mais j'allais pas remonter le carter comme ça, avec toutes les pièces que j'ai, c'aurait été du gâchis : Bielles NOS, axes de pistons NOS, coussinets de vilo NOS, coussinets de bielles NOS, tubes enveloppes NOS, tôles sous cylindres NOS (!), AAC "Okrasa" Joe Ruiz...

Du coup, j'ai envoyé le bloc chez Feller pour une ligne d'arbre en +0.5mm. Et là, il m'a fallu trouver des coussinets en cote réparation (dommage, j'avais des NOS VW en cote origine dans leur boite!)... Pas évident pour les pieds moulés! Classic-Store en a en stock, mais de piètre qualité (Sintermetal, fabriqué en Argentine), même eux recommandent de ne pas monter ça! ("mais ils ont le mérite d'exister")

Après 18 mois de recherches, je les ai finalement trouvés en Allemagne. NOS VW, 150€ le jeu hors port (ouch!), mais bon, pas vraiment le choix... On est déjà fin 2013, et entre-temps je me suis lancé sur le moteur du KG. Le pied moulé a alors sagement attendu sur son étagère...
Mais c'est fini, il est temps de refermer le bébé! icone smiley laugh

Janvier 2016, je vais chez Laurent (Dangerous - merci ma caille!) fermer le bloc : il a plus l'habitude que moi, et on sera pas trop de 2 cerveaux pour tout vérifier au montage. Ce qui ne nous empêchera pas d'oublier la tôle sous cylindre au culassage ceci dit... icone smiley laugh
Ca veut dire aussi un peu moins de photos étape-par-étape, conditions d'éclairage pas idéales dans son atelier.

Mais avant d'oublier, je replace les petites plaques de guidage des poussoirs (qui ont un méplat et ne tournent pas sur pied moulé). Serrage léger avec une goutte de frein filet, et je replie la patte de blocage sur l'écrou. Ca se fait un peu au feeling, le poussoir doit coulisser gras avec un très léger jeu.
Dans la foulée, je reprends la galerie sur le palier N°3 : sur les pieds moulés, le passage d'huile est usiné dans le bloc au lieu du coussinet, et le ré-usinage de la ligne d'arbre l'a sérieusement réduit. Je l'approfondis un peu à la Dremel, sur les deux demi-carters.

Bielles

Les bielles NOS sont d'abord mises au poids, dégrossissage à la meuleuse pneumatique, et finition à la lime électrique : j'ai 0.7g d'écart entre le plus lourde et la plus légère.
Leurs coussinets (NOS eux aussi) sont déglacés avec un bout de tampon Jex usé (à l'huile), installés, et le jeu avec le maneton de vilo vérifiés au Plastiguage.
Le vilebrequin est d'abord rhabillé avec les pignons AAC et allumeur, puis les bielles sont montées dessus, serrées au couple à 5mkg (dixit la RTA et la revue d'atelier, surprenant : 3.5mkg sur T1!), et dé-stressées (petit coup de marteau avec un jet en bronze pour libérer les contraintes liées au serrage).
Au montage, je lubrifie les manetons au Wynn's Supercharge, pour assurer la lubrification lors du montage et jusqu'au premier démarrage. Comme c'est très visqueux et collant, ça ne se fera pas la malle comme de l'huile...

Cylindres / Pistons

Les têtes de pistons sont passées au marbre : polissage pour limiter le transfert de chaleur.

Les cylindres ont été contrôlés en même temps que les pistons : tout est dans les cotes. Clairement le kit n'a que très peu roulé : perso j'ai du faire 2000km max avec ce moteur, je suppose que les chemises/pistons avaient été montés neuf dessus.
Bref, les cylindres sont simplement nettoyés et déglacés (honage), et sont déclarés bon pour le service.

Les pistons sont gentiment préparés : un petit chanfrein sur le bas de la jupe (à la lime electrique : super outil, il m'en faut une!) pour aider la création du film d'huile, angle cassé à la tête (doucement au papier de verre 800), et mise au poids (pas évident, 2 fonderies différentes, j'ai du me résigner à avoir deux plus lourds et deux plus légers, chaque couple mis en opposition 2 à 2).

Je contrôle derrière le jeu à la coupe des segments : la RTA donne entre 0.35 et 0.62, j'ai 0.35 serré sur les 8 segments d'étanchéité, parfait. Je les monte en y allant doucement sur la pince à segments, et en huilant tout bien ; on vérifie bien que l'inscription "top" est vers le haut, on tierce en tenant compte de l'orientation vers le VM (deux ouvertures du segment racleur en haut, décalées de 45°, deux ouvertures segments d'étanchéité en bas à 120°).

Finalement, les pistons sont emmanchés dans leur cylindre respectif avec un compresseur de segments, et beaucoup d'huile.

Culasses

Beaucoup de travail sur les culasses que j'avais trouvées à Valence...
Après un nettoyage en règle à l'essence F, je les ai microbillées pour y voir clair. Pas de mauvaises surprises, un micro-bout d'ailette cassé, rien de méchant ; et surtout, aucune fissure. Banco! ("je l'entends encore... Banco..." : un cookie pour celui qui capte la référence).
A propos : il vaut mieux boucher les guides de soupape pour le micro-billage : un bon plan pour ça, c'est les bouchons d'oreille jetables en mousse! icone smiley wink
Elles sont propres, mais bon... Il y a matière à améliorer les choses. C'est pas un foudre de guerre le pied-moul' d'origine, s'il y a un cheval à grappiller par-ci par-là, faut pas s'en priver. Et les culasses sur un moteur VW, c'est le nerf de la guerre...

Alors on se retrousse les manches et on y va!
Pour commencer, les sièges de soupapes sont retouchés trois angles pour améliorer le flux (il y a une vilaine marche d'origine) : faut y aller tout doux, y'a pas beaucoup de viande pour travailler.

Ensuite, les soupapes sont nettoyées et légèrement modifiées : montées sur une perceuse à colonne, et retouchées à la lime électrique. Lissage, la tête un peu diminuée pour retirer le bossage... Le but est toujours d'améliorer le flux ; tout doux encore, y'a pas beaucoup de matière.
Les soupapes sont rodées sur leurs sièges, et les demi-clavettes de queues de soupapes réduites (au niveau du plan de contact, pour bien plaquer sur la soupape ; les clavettes se touchaient et du coup avaient du jeu sur la soupape).
Puis les conduits sont légèrement repris, pour retirer les marches, marques de fonderies, alignement siège/conduit, etc... Dremel et fraiseuse pneumatique, et on lisse tout ça.

Ensuite : d'origine, le rapport volumétrique était de 6.6 (d'après la RTA), ce qui était ok avec les carburants des années 60, mais franchement dépassé avec notre Super 98 : un 8.5 serait mieux, pas de risque de cliquetis, plus de watts et meilleur rendement.

Je mesure donc mon deck height (0.88mm) et le volume de chambre d'origine (48.75cm3) : je tombe sur un RV à 6.64, ce qui correspond bien à ce qu'annonce la RTA.
Pour augmenter ce RV, pas 36 solutions, faut diminuer le volume de la chambre de combustion, et pour ça descendre le fût de cylindre dans la culasse, en vérifiant régulièrement le volume obtenu, et recalculant le RV (à ce propos, il y a une super calculette sur F4E pour ça...).
Entre le centrage au comparateur, le réglage de la tête (automatique, bel outil), les mesures régulières, c'est un jour et demi de travail qui y sont passés.
Au final, en descendant de 3.2mm, on est arrivés à 35.6cm3 de volume de chambre, et donc un RV de 8.51. Woohoo!
Même punition pour l'autre culasse, descendue de 3.15mm pour avoir les mêmes chambres.
Evidemment, avant de se lancer dans cette modif, il faut vérifier la levée des soupapes pour ne pas qu'elles touchent les pistons à pleine levée... Dans mon cas pas de soucis, il doit bien me rester 5mm, je suis large.

Sauf que maintenant, les fûts de cylindres ne touchent plus au fond de la chambre, mais en haut sur la première ailette de la culasse ; on sort donc la "bête à corne" et on rabote de 1.2mm, jusqu'à ce que les cylindres plaquent bien au fond des chambres (on vérifie avec un jeu de cale, 0.2mm de jeu entre cylindre et culasse, tout va bien!).
Par contre, sur la culasse droite (cylindres 1 & 2), j'ai l'ailette qui est devenue vraiment fine, façon lame de couteau... Pas top, mais bon. Je vivrai avec.

Finalement les chambres sont légèrement retouchées à la Dremel pour supprimer les angles vifs que l'usinage a créés (sources de points de chauffe et de cliquetis), et ça y est, elles sont prêtes à monter!
Ouf... Tout ça pour ça! icone smiley wink
Sur ces photos, on voit un effet de "vaguelettes" sur la culasse après usinage : l'ailette commençait à devenir un peu fine et se mettait à vibrer sous l'outil se la fraiseuse.

C'est bien beau tout ça, mais du coup le moteur est plus court de 3.2mm de chaque coté! Il faudra donc retailler les tiges de poussoirs pour prendre en compte cette réduction, sinon la géométrie de la culbuterie sera dans le sac... Mais ça, ça peut attendre pour le moment, je reviendrai dessus plus tard.

Pompe à huile

Le couvercle de pompe à huile était bien marqué... Je l'ai plané sur marbre au papier verre à l'huile pour lui virer ces marques vilaines d'usure.
Le corps de la pompe à huile est microbillé, son tenon meulé pour éviter toute interaction avec l'AAC, et ses conduits alignés avec ceux du bloc. La face est légèrement planée aussi, juste pour virer les traces d'oxidation, elle était propre.
Bonne pour le service!

Fermeture du bloc

Pour bosser propre, j'avais déjà microbillé toute la visserie (ouais, je vais me faire un T-Shirt "I ? microbilleuz"), et j'ai passée tout ce p'tit monde au taraud/filière. Les goujons de culasses ont été décapés (au tour, ça va vite), passés à la filière, et peints pour éviter la rouille (dans la famille Overkill je voudrais le fils).
Je n'ai pas fait beaucoup de photos de l'assemblage, il commençait à se faire tard et il fallait boucler...

On prépare donc la fermeture :
  • Pour l'étanchéité, le plan de joint d'un demi-carter est enduit de pâte anaérobie Loctite 518. Super produit : on peut prendre son temps pour travailler (elle ne sèche pas à l'air), elle est miscible dans l'huile (pas de risques de bouchage de galeries comme avec les pâtes silicone)... et j'adore son odeur!
  • Les coussinets vilo, et les paliers arbre à cames (pas de coussinets AAC sur pied-moulé) sont copieusement lubrifiés à la Wynn's Supercharge.
  • Les cames de l'arbre à cames reçoivent une couche de ZDDP ; un peu overkill encore au vu des ressorts, mais bon, tant que j'y suis...
  • Le bas des cylindres reçoit un petit congé de CAF ; idem pour les joints des tubes enveloppe.
  • Les écrous et rondelles de culasse qui se trouvent sous le cache-culbuteurs reçoivent une couche de 518 aussi, pour éviter les fuites d'huile par les filetages.
  • Les tubes enveloppe NOS (merci VW Classic via Slide Perf/Classic Store : 8,30€ pièce, ça pique, mais belle came) sont dégraissés et prennent une fine couche de peinture haute température couleur alu, histoire qu'ils ne rouillent pas direct.
  • Les tôles sous cylindres sont NOS aussi...

On vérifie une dernière fois, on inspire un grand coup, et y'a plus qu'à refermer :
Et.... Taadaaaaaa!! icone smiley laugh

Bon, on n'est pas encore sur la route hein, mais c'est une bonne étape de franchie!
La suite bientôt!
Posted in : 1959 Beetle
Displayed 78693 times.
icon permalink
Posted on 30/06/2014 at 22:41

Kitty Injection : Engine : 1776 part. 2

Here's an article that took its sweet time before publishing... Anyway, things are going forward - slowly, but still forward!


Crankcase

I kept working on the case :
  • All edges are smoothed,
  • Casting marks are removed,
  • The ventilation holes between cylinders 1&2 / 3&4 are widened (the three fingers rule!) and smoothed,
  • the oil return hole at the bottom of the partition with the distribution gears is enlarged,
  • the ventilation above the central bearing is enlarged.
It may not look like much, but there's already quite a few hours of Dremel-ing to get there!

The global idea is twofold : first, enhance the air flow inside the crankcase to avoid over-pressure, second, ease the return of the oil to the bottom of the case, in order for it to go back in the oil circuit (the oil remaining on the inner faces of the case is useless!).
Smoothing the edges also helps preventing concentration of constraints in the material, and the cracks that could result from them. Well, to be honest, I'm not really too concerned about that on my little 1776! icone smiley laugh

As a comparison, here is one of the ventilation ports before smoothing... icone smiley wink
As per the tools I use, it's first a pneumatic grinder with carbide bits to quickly remove material, then Dremel and its accessories (sanding cylinder, miscellaneous grinding stones...) to refine, and finally 120/180 grit sand paper for a final smoothing.
For the case's exterior finish, I used a fine rotary abrasive brush (on the pneumatic grinder, this baby gotta turn fast!). The objective was just to remove the oxidization and remaining muck after its previouss chemical cleansing...


Berg Conversion

I had my mind set onto using head washers an nuts around the case ("Gary Berg conversion") : the thick washers (4mm) and the 15mm nuts allow a tighter torquing of the case perimeter (2.7mkg instead of the origin 2mkg), leading to a more rigid crankcase.
But to do so, one needs first to spot face the case for the washers to lay flat on the material... As I did not really want to go ask pay a professional machinist to make that modification, and since I'm kinda stubborn (icone smiley laugh), I found a way to make it myself.
In order to do so, you would first need the right tool, a 22mm counterboring bit with a 8mm pilot tip (actually fellow enthousiast KY260, advised that Ø23mm is even better, as the washer may be a bit tight with 22mm). Not an easy to find tool, but I finally found it on eBay : a set of 23mm cutters, with two CM3 tool holders and 4 14.4mm pilot tips. At 44€, that was a steal! icone smiley wink
As I don't have a mill, I want to use that tool with my drill press ; in order to do so, I lathed down one of the CM3 tool holders to give it a cylindrical end instead of the conical morse one. I also lathed one of the pilot tips down to 8.5mm (that hardened steel was very, very hard to lathe!).
Finally, I have the correct tooling, let's give it a shot!
Before I actually modify my crankcase, I did make a few tests on my former, out-of-tolerances case, just to validate the process first. Finally, I found a way to do it, by clamping my drill press down on the bench, turning the drill press head backwards to get enough height, and drilling slowly... I know my assembly will make any proper machinist shiver, but the resulting spot faced areas are really nice and flat and perpendicular : process validity checked! icone smiley wink

So, here we go now, same procedure on my actual case. It's actually quite a quick process, except the ones below the case ; some Dremel work was required to free the way for the cutter.


Unpluging the oil galleries

In order to thoroughly clean the oil galleries, and by doing so avoid that some gunk would screw up all the nice work do so far upon engine's first start, you must un-plug the galleries. The operation isn't that difficult if you're careful : first center-punch the plug, then drill it with a 3mm drill bit ; then force-screw a sheet metal screw in that hole, and pull on it with an inertia hammer.
Since I did not have an actual inertia hammer, I thew one together with what was available around the workbench... I'm actually pretty happy of that recycling of an old rear-drum 36mm nut. icone smiley laugh
If you give this modification a shot, here are the plugs you'll need to pull (circled in blue) ; there are 10 of them, but I'll pug back only 9, the last one being the full-flow input.
The plug on the side of the case (right below and between the cylinders 3 and 4) is drilled to a 8.5mm diameter, all the way down (around 67mm, down to right behind the central camshaft bearing), to enhance the oil flow in the right half of the case. With a sharp drill bit, turning fast, going in slowly as to keep the bit from "screwing" into the material, that's quite an easy thing to do (back up often to get the shavings out).


Cleaning and plugging back the galleries

So, now that the galleries are un-plugged, it's time to clean them, and find a way to plug them back after!

Here's the tools of the trade for these two steps...
I ordered plugs from Torques.co.uk (great address I already got fuel fittings from). These are conical NPT 1/8"x27, 1/4"x18 and 3/8"x18. They are anodized aluminium, really nice products ; to be installed with Loctite 577 pipe sealant ; make sure you have the imperial size Allen wrenches to tighten them in!

As for the cleaning of the galleries, any means are good. Myself, I'm first using the compressed air to get rid of as much shavings and dust as possible ; then bottle brushes, shotgun brushes and pipe-cleaning brushes... And lots of brake cleaning fluid ; some WD40 can be used too, to help removing any hardened oil sticking in the nooks and crannies.
To make it a bit easier, I like to mount the bottle/riffle brushes on my cordless electric drill, and then go back and forth in the galleries while turning full speed ; that's the way to go, galleries end up all nice and shiny! (sorry, no picture about it, I could not manage to get a proper picture inside the oil gallery)
Next, taping the plugs holes... This operation produces a lot of shavings and dust, so make sure you wait till you've finish this step before actually doing your final cleaning of the galleries!

Prior to taping, you first need to drill the holes : here are the drill bits sizes you'll need for that :
  • 1/8" plug : 8,5mm drill bit (11/32"), going 15 mm deep
  • 1/4" plug : 11mm drill bit (7/16" ), going 26 mm deep
  • 3/8" plug : 14,5mm drill bit (37/64" or 9/16"), going 25 mm deep
Drilling depths are just given as an indication ; they totally depend on your taps and plugs, so don't take my word for it and make your own trials! icone smiley wink

You need to be cautious while taping, as it's conical. As per the depth, you need to go little by little : tap a little, test fit the plug, tap a bit more, test fit the plug, et cætera until the plug sits flush with the case when tighten. To make it easier/faster, once the first plug of a given size is tapped, I make a mark on the tap for the next ones! (see previous picture, red marker stripe on the tap)
The gallery on the output side of the oil pump needs to be plugged as well. The pump itself is already tapped, but plugging the gallery too will prevent oil pressure from coming back in this gallery, causing leaks and/or oil going back in the case instead of the circuit. I put that plug deep into the gallery, that should help avoiding gunk and debris from stocking up in that dead-end part of the oil circuit.
So here we go gain, NPT 1/4"x18 tap, directly in the gallery without any prior drilling (inside diameter is correct). Half a turn ahead, quarter turn back to get shavings ou, and repeat... The plug will be tightened in the gallery with its dose of Loctite 577 pipe sealant again.


Camshaft

Out of the box, the cams edges are razor sharp, which may damage the lifters upon engine's first start. So I lightly smooth them down with my Dremel and a sanding drum. It doesn't need much, just smoothing down that angle a bit ; I finish it off with some 600 grit sandpaper with a drop of oil.
The journals are polished with some 2000 grit sand paper (a worn-out ScotchBrite pad would work too), to remove any imperfection and promote the oil film. If you use sand paper though, make sure you thoroughly clean the part after, as grit particles may get embedded in the material (well, that's more true about the soft material of bearings han the hard steel of the journals!).
Assembling the driving gear : the screws delivered with the camshaft have a ring protruding on top of them, which may interfere with the back of the oil pump. Since that ring does not bring anything in terms of resistance to the screws, I lathe it down (well, a file would have done the trick too!).
Finally, a thorough cleaning/degreasing of all the parts (brakes cleaning fluid, acetone), and assembly, torquing the screws at 25nm, with a drop of Loctite threadlock (the stronger, red one - you really don't want these to get loose!). The notch in the camshaft (that drives the oil pump) has to be aligned with the mark on the gear.
I give the whole thing a thin coat of WD40 to prevent any oxidization, and I put it aside, in a clean protective plastic bag.


Oil pump

The oil pump is a modified model, prepped by Feller Service (a french perf shop) : it's a Shadek 26mm base, machined to add a couple of O-rings around it (to prevent leaks and cavitation). The pump body and gears are rectified so that the gears are perfectly flush with the body (checked with my trustful rectified ruler).
The output is already plugged, with the full-flow output on the anodized black, CNC aluminium cover (tastefully engraved with the name of my fav parts dealer! icone smiley laugh).
More information about this pump on Feller's blog (in french only I'm afraid) ; actually if you give it a close look, my pump cover is somewhere on the last picture, on the right hand side... icone smiley laugh
Anyway, here's a really nice, highly recommended product, and made in France for once!
Still, I make a couple of modifications on it : first, the tear drop shaped input as recommended by Berg, so that the oil arrives nicely all along the gear. I also slightly grind down the rear protruding tenon, to make sure it won't interfere with the camshaft screws.
The oil inlet port is aligned with the gallery on the case (see this post by PanelVan) ; I was luck, I had less than half a millimeter gap, so a light Dremel sanding drum touch in the pump body was enough to align it perfectly.
And that's it, enough for the oil pump, it's ready to install!

To be continued soon!
Posted in : 1968 Karmann Ghia
Displayed 160808 times.
icon permalink
Posted on 30/01/2014 at 09:03

Kitty Injection : Moteur 2 : 1776!

As I explained in my previous article, after my signature "distributor gears salad", I'm moving to plan B : I'm taking the spare engine case from the shelf it's been sitting on for years, make some thorough measurements and... it's like new, with perfect, stock-size bearing saddles!
  • Bearing saddle 1 : 64.98 / 65.00 / 64.99 / 65.00
  • Bearing saddle 2 : 64.98 / 64.99 / 64.99
  • Bearing saddle 3 : 64.99 / 64.98 / 64.98
  • Bearing saddle 4 : 50.01 / 50.00 / 50.00 / 49.99
Finally some good news! I have an engine case! Woohoo!

While I'm at it I measure the crank that's inside this case ; out-of-round is OK with 0.01mm, but the rod and main journals have been ground to 2nd undersize. Serviceable, but well, not ideal.

So...What now?

I take a deep breath and give it a good thinking... Since I'mm rebuilding a complete engine, why remain with a stock 1600? icone smiley laugh
So, after a lot of reflection about the cost / reliability / performances ratio of my future engine, I decide to go for a 1776cc : stock 69mm crank stroke, and larger 90.5mm bore pistons/cylinders.
My objective is to build an engine capable of long drives on the highway, but still playful on the little mountain roads of my area - this will remain a "week end driver", so mileage is not my priority.
I want a strong, durable, optimized engine, with a wide range of usability, while keeping the Mex injection manifold for now, but keeping an upgrade as an option for later...

So, I roll up my sleeves, and here we go! icone smiley wink

Case :

I make some modifications to the engine case, inspired by the "Bob Hoover's Sermons", what he used to call the "HVX modifications" (read about it on his blog here, and there). A good reading (in french, sorry!) as well if you want to give it a shot, this post and this post by Vince/PanelVan, who demonstrates this procedure very well.

The idea behind this modification, is that the right side of the case is supplied with oil only through the grooves around the central camshaft bearing (see schema below). That's far from ideal, since the lifters/rockers/valves on the right side (cylinders #1 & #2) are less lubricated/cooled than on the left hand side of the case (cylinders #3 & #4).

The solution recommended by Bob Hoover was to extend the lifters oil gallery (bottom right on the schema), and feed it through a hole drilled below the gear-side camshaft bearing.
OK, here's a schema of the modification, that'll be easier to explain! icone smiley laugh
In practice, to make this modification, we first remove the oil gallery plug (green arrow on the schema) ; there's a method involving drilling and pulling with a screw, but we found out it was actually way easier just to push the plug in, with a punch and a hammer, until it drops into lifter bore! icone smiley laugh

Next is the extension of the lifters oil gallery, to bring it up to 225mm long. I've used for that a foot-long, Ø6mm drill bit, and used a small hand-held electric drill. The trick is to go in slowly with relatively high RPM (to avoid breaking the bit in the case), using some lubricant to avoid vibrations (WD40 will do), and back off often to get the shavings out. A piece of tape on the drill bit helps spotting when to stop.
For the hole under the camshaft bearing, I used a Ø7mm on a press drill.

It's actually quite an easy process ; I was a bit nervous the first time, but I drilled 4 cases in a row that day, I was pretty confident in the end!
Beware : make sure there's enough material on your case before drilling anything, not all cases are identical, and on some of them your gallery extension would end up outside of the case... Which would surely end up in the trash bin for that.

Simultaneously the oil grooves on both the camshaft bearings (red arrows on the schema) are widen with a Dremel to increase the oil flow.
As next, I drill a hole below the alternator stand to enhance the air flow inside the case, thus avoiding pressure build-up by using the volume on the cam-gears side.
The first hole is drilled with a Ø9mm bit, and then widen it with a pneumatic die grinder and carbide bits. My brand new bits eat through magnesium like if it was butter!


Here again, I was a bit nervous at the beginning, but the handling of the die grinder comes with practice... Three cases in a row that day! icone smiley laugh
Security Hazard : all these modifications produce quite a lot of magnesium shavings and dust, which are highly flammable. Magnesium burns at very high temperatures, and its combustion is almost impossible to stop... So make sure you safely and often get rid of these shavings/dust!

Next step, the case is shipped for some machining, but not alone : since we are a small group of friends building engines at the same time, we're pooling the shipping costs, and it's a complete pallet that leaves the workshop!
My case will be bored to accommodate the bigger 90.5mm cylinders, get a full flow outlet (to install a proper oil filter), a shuffle pin of the central main bearing (to increase the rigidity of the block), new 8mm inserts installed, and finally a complete chemical cleaning, just to start on a clean base.

And after a couple of weeks of patience, here's the result! icone smiley laugh
There, it look better already!

Camshaft / Lifters :

The camshaft is a L&G V280 lobe 108°, to keep a street-oriented yet playful behavior to this engine... a compromise, we'll see in practice if it was the right choice!
It's running thanks to a couple of straight-cut cam gears, to limit the axial efforts on the camshaft, and gather a bit of power too... The gears are steel and aluminum to limit their nose : steel on the crank, aluminum on the camshaft.
The lifters are Tool Steel ones, mainly for me not to have to worry about the camshaft break in (the unknowns of injections when you're a newbie, you know...).
They're lighter than the stock ones : 57g each instead of 87g, nice! That's will help grabbing HPs at high revs!
At a hefty 350€ the set, these are quite expensive lifters, but at least I won't have to worry about'em.

Finally, the camshaft will run on a set of dual thrust bearing, to make sure it's axially guided on 360°...
To be continued... Soon! icone smiley wink
Posted in : 1968 Karmann Ghia
Displayed 189107 times.
icon permalink
© Sham 1996-2024