Posted on 05/09/2017 at 06:53

Terrace Project : The Bamboo Containers Strike Back

The Bamboo Containers Strike Back
Since my lovely neighbor decided to cut down all the trees that made my place a small green haven, ("because it looks cleaner this way!... Don't get me started 'bout it), I've had to build another pair of bamboo containers, to add another hedge to my terrace an regain some much needed privacy (not that I don't like my building-across-the-street-neighbors, but you know).

As the containers I built back in 2009 aged pretty well, I'll use basically the same plan.
Sorry, you'll get less pictures this time, the build method is the same ; and the picture quality is average, I only had my dying smartphone at hand,

I begin with a good Sketchup session to get the dimensions right, and find out precisely the materials I need to buy... You can download the sketchup file here if need be.
Looking back, I was only half convinced by my choice of using OSB as a bottom board when I built my first set of containers (even though it's still holding 8 years later). Instead, I'll use this time a 20mm thick solid pine wood board, that look much tougher to me. And affordable, at 12.20€ the 200x60cm board ; I cut them down to the final 138x51cm by clamping the 2 boards together and cut both at the same time with a circular saw.
DIY bamboo containers wood plansDIY bamboo containers wood plansDIY bamboo containers wood plans
Just like the first time, I use 20mm thick weathering boards on the sides. Everything's glued together with PU glue, then screw with stainless, deck screws.
Actually, I changed my mind at the last minute and decided to make the containers 5 boards high instead of 4... So I went back to get some more, but unfortunately they didn't have the same model available, only another slightly wider one... So I had to adapt a bit for my second container, meaning the two of them aren't exctly identical. My OCD self will have to live with that! icone smiley laugh
DIY bamboo containers wood plansDIY bamboo containers wood plansDIY bamboo containers wood plans
Four layers of mahogany tainted wood surface coating (inside and outside), to protect and finish it ; I used a product from the "Syntilor" brand, it's advertised as holding 10 years, we'll see about that. I perfect the water tightness with some silicon caulk, to prevent the wood rotting from water infiltrations on the long term.
DIY bamboo containers wood plansDIY bamboo containers wood plansDIY bamboo containers wood plans
I won't use a tarpaulin inside this time, contrary to what I did on the first containers I built. I'm not convinced about how it handled humidity and roots ; Instead, I brushed two thick layers of tar (from tarp to tar... basically got rid of 1 letter). I stop a few inches below the top of the container for aesthetics reasons...
The product smells really bad, make sure you use a prooer filtering face mask, as well as gloves, security glasses and long sleeves...
Once dry (well, it actually never completely dries), it becomes inert and doesn't smell at all, and provides a watertight layer between the soil and the wood.

The bottom water outlets are, just like last time, plastic air venting grills, caulked to the bottom. Well, bad idea, should have done that before the tar, the silicon reacts badly to the tar, turns yellowish and cracks... Well, it wasn't critical, it'll do. icone smiley smile

To enhance visual privacy (especially while the bamboos are growing), I install a reed screen above the containers :
  • on the right hand side, a metal post is screwed to the container, with an additional diagonal support to help handle the cables tension.
  • on the left hand side, I directly drive 3 stainless, heavy-duty screw-eyes in the last post of my wooden fence.
Finally, I put 3 steel cables in between them posts, and I attach the reed screen on them.
DIY bamboo containersDIY bamboo containers cold tarDIY bamboo containers brise vue
Ok, now comes the time to fill'em up!

I first put a terracotta tile above each grill to protect them from the weight of the soil above.
Then, I add a 6-7cm layer of small stones, to keep a draining layer, which I perfect with a bag of gardening pozzolan I had laying around.
Then I put a double layer of geotextile over the whole thing, to prevent soil and roots from clogging the drain too quickly.
DIY bamboo containers soilDIY bamboo containers drain stones pebblesDIY bamboo containers geotextile
I finally add some soil (a bit over 5 bags of 60L in each container), plant 6 bamboos, taaa-daaaa!

I install four 12V LED waterproof spot lamps, to blend in with the other 2 containers... And I'm done, just have to wait for the bamboos to grow a bit, and I'm done with the bloody neighbors-across-the-street hassle! icone smiley wink
DIY bamboo containers spot LED 12VDIY bamboo containers spot LED 12VDIY bamboo containers spot LED 12V
DIY bamboo containers resultDIY bamboo containers spot LED 12V
Posted in : Terrace Project
Displayed 24148 times.
icon permalink
Posted on 30/08/2017 at 23:27

500.000 hits

500.000 visites!
One glance to the odometer :
Half a million visitors came ome this website! Champagne!! icone smiley smile
In July 2000 we celebrated the 5000th visitor... Damn, we did ride a long way since then! icone smiley laugh

One glance in the rear view mirror :
ShamWerks as of today, it's 19 years of online presence, 317 posts, 95% of which translated to english, over 450 comments by visitors, and over 5000 pictures!

Both hands on the steering wheel :
Even though probably no one noticed, there's been quite a lot of evolutions on the site, to make it faster, and up-to-date with the technical state-of-the-art. In particular, ShamWerks is now mobile-friendly (say "responsive" if you wanna look fancy), so you can read it on your smartphone or tablet! (I had to go through over 300 posts to make sure it was bulletproof...).

Eyes on the road :
Right now, I have over 20 articles being written, and quite a lot of ideas for future projects. Well, let's be honest, probably way more projets than I have spare time for... But anyway, expect some heavy stuff soon! icone smiley smile

In July 1999, we barely reached the 2000th visitor ; it took 17 years to reach this half million milestone... But if I follow the current trend, see you in Summer 2024 for the 1.000.000th visitor party! icone smiley laugh
As usual, thanks to all of you for your interest, I know many of you are long time followers. Have a good trip!

Crédit photo : Sherif Mokbel
Posted in : News
Displayed 32180 times.
icon permalink
Posted on 18/08/2017 at 07:22

Elvira : Rebuilding the 36hp, episode 9 : Flywheel and Cluch

episode 9 : Flywheel & Clutch
OK, time to put the flywheel back on... Where is it, by the way? icone smiley meh
Confession of the day : I've spent hours upon hours, month after month, looking for my flywheel. I completely emptied my 3 garages, twice, and I was still unable to find the bloody thing.

I finally came to the conclusion that I possibly had thrown it away by mistake (!), and right before I started looking for another one (they're not easy to come by, them 36hp flywheels), I gave a call to my friend Laurent, to ask if I had not left my flywheel at his workshop when we closed the engine block... I didn't expect much as I thought I remembered him telling me it would be better to keep all the parts together...

But he told me "yes, sure your flywheel is here!!".

GRRAAaaaaRRRGHh!!!! So much time lost! Damn, I could kick myself in the ass! #StupidOfTheYear

Anywayyyyy...
On my flywheel, the oil seal running surface was pretty dull : some pitting, lots of oxydation... In order to avoir any oil leakage from there, I had to do something about it.
So I polished the running surface, starting with dry sandpaper 320 / 400 / 600 grit, then with oil (WD40 is your friend) 800 / 1000 / 1200 / 1500 / 2000 grit. I ultimately use 3 polishing compounds, of increasingly finer grit, applied with a felt wheel on my Dremel tool.
I take this opportunity to ever so slightly round the top angle, to make sure the oil seal won't get damaged when putting everything together.

And Tadaaaa! Shiny-shiny! icone smiley laugh
VW 36hp flywheel oil sealVW 36hp flywheel oil seal
Now comes the time to adjust the axial play of the crankshaft ; it has to be comprised between 0.07 mm and 0.13 mm, ideally in the lower part of this range, to take into account the parts wearing out.
That's the opportunity for me to bring out my BIG torque wrench, the one I use to reach the 35 mKg needed to properly tighten flywheels and rear wheels' central nut. icone smiley smile

First step, find a set of shims, cuz' as expected, the ones I have don't allow me to adjust the play correctly... And as usual, the 36hp shims aren't the same as Type 1's, and much harder to source!
Long story short, I buy a couple of 0.32mm shims from VW Classic Parts, take out the ones in my original engine, and I end up with a pretty good assortment of shims in various thicknesses, plus 3 paper gaskets of various thicknesses.

Without the paper gasket between the flywheel and the crankshaft, I get a little over 0.03mm of end play, measured with a dial indicator. After 4 assembly/torquing/disassembly sessions, I manage to find the right set of 3 shims (always install 3 of them, for relative rotation speed reasons) to get 0.10mm of end play with the paper gasket on. I would have prefered it to be a tiny bit tighter, like 0.08mm, but it will do. I give the oil seal a good dose of lubricant, put the flywheel on, and torque the central nut (with a drop of blue Loctite medium threadlocker).
VW 36hp end play shims crankshaftVW 36hp flywheel torque wrench FacomVW 36hp flywheel end play measure dial indicator
Just for later reference, if you ever had to look for 36hp shims : here are the VW references. Good hunting! :
  • 111 105 281 : 0.24 mm
  • 111 105 283 : 0.30 mm
  • 111 105 285 : 0.32 mm
  • 111 105 287 : 0.34 mm
  • 111 105 289 : 0.36 mm
You can get reproductions from BBT, but at 6€ a piece, I find it a bit expensive... And make sure you deburr them before use!

The flywheel had been re-surfaced and balanced with the crank and clutch assy (work done by Slide Perf in March 2012!! It's really high time for me to finish this engine! icone smiley sadicone smiley meh).

A "1" mark had been stamped to make sure the flywheel is in the same position as it was balanced ; same for the clutch assembly, with a "0" mark. At least, the bloody thing shouldn't wobble around. icone smiley wink
VW 36hp flywheel clutch assembly balancing crankshaftVW 36hp flywheel clutch assembly balancingVW 36hp flywheel clutch assembly balancing
The flywheel, clutch disc and clutch mechanism running surface are thoroughly cleaned using brake cleaning fluid before assembly.
The clutch assy screws are torqued (2.5 mKg) and secured with the usual drop of Loctite.

That's it for today! Yet another checkbox ticked out! icone smiley laugh
Hopefully this engine should run in no time now! (wishfull thinking...)
Posted in : 1959 Beetle
Displayed 36416 times.
icon permalink
Posted on 20/07/2017 at 21:00

Earth Population : +1

Precisely one month ago, on June 20th at 9:00PM, arrived Enoha, the new intern in the ShamWerks team. icone smiley wink

Let's face it : my new fatherly activities will certainly slow down the current projects in the works... But you just wait till I can give him a 13mm wrench! icone smiley laugh

Happy Monthversary lil'Baaaaaaby!
Posted in : News
Displayed 59768 times.
icon permalink
Posted on 05/04/2017 at 21:50

Camwerks : DIY Camshaft measuring bench

DIY Camshaft measuring bench
Those of you who follow ShamWerks on Facebook already got a peek of this thing back in January 2015! Well, it was high time I finally write an article about it, right?

I stumbled upon a picture of a camshaft control bench on Vince/Panelvan's blog (here)...
As I had just bought the high-performance camshaft for my Ghia, the idea of being able to check its actual features (and verify what's given by the part's constructor) made its way ; I was pretty sure I could find a way to make it happen on a budget. And, let's put it mildly, I'm kinda stubborn. icone smiley laugh

Thinking about it, there must be a way to put together a stepper motor, a digital caliper (cheap chinese models have a serial output), and an Arduino to control all of the above and push measures to a PC through USB... Amarite? icone smiley wink

For those of you who don't like reading (aka "TL ; DR Team")

Long story short, after a couple of hours tinkering around, I got myself a functioning bench : here's the result in video : icone smiley laugh
(watch it in full screen HD 720p to be able to read the results)

Sorry for the less-than-average quality of the video, which in addition doesn't show the latest version of the software... I'll try to shoot another one with a better lighting! icone smiley wink
And now, for those who aren't afraid of reading ... Keep scrolling! icone smiley wink

Electronics

I use an arduino as an interface between the bench and the PC, but it can not control the stepper motor directly, it needs a driver ; I found a chinese one, based on a L298, for less than 5€ on dx.com (here).
Beware, if you use the same driver as I did, do not trust the allegedly regulated 5V output on it ; I wanted to use it, but it blew the very first time I tried to ; I ended up with a blown condenser on my arduino... icone smiley meh

Speaking of made-in-China, I also buy a 15€ digital caliper... Well, TBH, if I had to redo it all over again, I'd probably go with a slightly more expensive version : the electronics are identical between versions, but the "mechanical" part can be better. The entry-price ones tend to grip/jam a little bit, which can lead to measure inaccuracies.

Since I don't wanna have a battery that dies on me in the caliper, I use a LM317 to feed it 1.64V, generated from the 5V of the arduino (the original battery on those calipers is 1.5V).
I also add two transistors to step up the signals from the caliper (clock and data) to levels the arduino can read (2.5V minimum). That's kinda overkill, just feeding the caliper with a higher tension may have done the trick, but it didn't look nice to me...

I take appart the caliper in order to solder in the output cable (I use an old land-line phone cable, perfect for that use) ; you can find specific cables that will "plug" into your caliper, but they are more expensive than the caliper itself, to solder it is! I than tie-rap the cable to the caliper to avoid mechanical constraints that would for sure rip the solder apart.

After I validated the circuit on a breadboard (it worked like a charm on the first try, I would have never guessed so!), I transfer it onto a veroboard/strip board.
You'll find down here the schematics of my circuit. Mind you, I have no such pretension to say that this is the right/best way to do it, electronics is by no mean into my comfort zone... But it does work great, feel free to modify/enhance it as you like!
electronic caliper arduino usbelectronic caliper arduino usbelectronic caliper arduino usb
electronic caliper arduino usb
The Sketchup model is available here (4Mo).
Bill of materials :
  • Reg : LM317 Voltage Regulator
  • T1, T2 : Transistor NPN - BC547B - BC171
  • C1 : condenser 100 nF - 50 V
  • C2 : polarized tantale condenser - 1 µF - 35 V
  • R1: 240 Ω
  • R3: 75 Ω
  • R2, R4, R5, R6: 10 kΩ
Resistors are all 1/2W 5% metal film ones. For your information, R1 and R3 are the ones that "tune" the tension regulator (Reg) so that it outputs 1.64V...

The following web sites helped me a lot while designing my circuit :

Mechanical part

Now for the bench : I need something sturdy enough to get somewhat reliable measures.
I start with a Bosch Rexroth 45x45mm profil, bought on eBay, but in the future I'll buy from Motedis, they are much cheaper and have all the useful accessories...
The grooves let me easily move the mounts/brackets, and the caliper stand, making the whole bench adaptable to camshafts other that Aircooled VW ones.

For the stepper motor, since I've pulled appart my fair share of printers and photocopiers in the past, I've got a stash of spares... So I picked one ; a nice 200 steps motors, that comes with a 1/3 ratio gear/belt set, for a final 600 steps output ; that's 0.6° increments on a full 360° rotation... Not bad!

I lathe down an aluminium adapter for my stepper motor, and another one for the camshaft (with a nylon screw in order not to dent the camshaft), linked through a flexible coupler. This means I'll need a new camshaft adapter for each and every camshaft diameter... I can live with that, but I can imagine a system using a small chuck instead to avoid that.
Then with some aluminium angle scraps, and a few skateboard bearings, I make supports for the camshaft on one side, and for the motor adapter on the other.

Finally, the caliper is fixed on some aluminium angle ; I angle-grind a VW lift (with some finishing done on the lathe) to put it on the jaw of the caliper, in order to have the same kinematics as in the actual engine.
camwerks DIY camshaft bench measurecamwerks DIY camshaft bench measure
camwerks DIY camshaft bench measurecamwerks DIY camshaft bench measurecamwerks DIY camshaft bench measure
The stepper motor output is connected to the camshaft adapter through an aluminium flexible coupler (5€ in Chine, agian...), which forgives the alignment errors. It's a 10mm-10mm coupler, that I bored on the lathe up to 12mm to make it fit my already lathed parts.

Finally, to give the electronics some much needed protection, I fashion a box out of some perspex scrap ; I cut it with a jigsaw, then use a heat gun to bend it... The result might not be aesthetically perfect, but it does the job.
I lathe some plastic stands out of a bit of PVC round to attache the electronics... Yeah, I know, plastic screws would have been a better choice, but I did with what was available in my drawers, ok? icone smiley wink

There, the whole system runs now, even though some points will need attention.
camwerks DIY camshaft bench measurecamwerks DIY camshaft bench measurecamwerks DIY camshaft bench measurecamwerks DIY camshaft bench measure
camwerks DIY camshaft bench measurecamwerks DIY camshaft bench measure
On these pictures you can see the caliper movement return movement powered by rubber bands : it actually did not work that great, the caliper tends to jam, which creates mistakes in the measures.
In the video at the beginning of the article, you can see I now use a weight (a ratchet wrench extension, stuck on a neodyme magnet) ; it works much better like that!

Bench evolution

So, it works, but can be improved... As I was writing this article, a freidn o'mine gave me a good idea to make the caliper movement more user-friendly (thanks aSa!), so here's already a first evolution of the bench!

The idea is to use an eccentric cam clamping lever to lock the caliper in place ; you can find these levers in bike shops, as they are use to lock saddle seats(I got mine from "Decathlon" for 5€ : see here).

So, I order a few more pieces of the same 45x45mm Rexroth profile from Motedis : I ordered 10cm, 15cm and 25cm lengths (for an affordable 1.27€, 1.64€, and 2.38€), as I wasn't sure yet how I'd use it yet. I also ordered a few of those tapped blocks that go into the grooves ; at 0.30€ a piece, I wasn't going to go through the hassle of makin'em myself.

As I modify the caliper's brackets, I make it stronger by using two aluminium angles, to prevent it from bending from side to side.
Bosch Rexroth motedis aluminumBosch Rexroth motedis aluminum
The result is perfect (see video) : moving the caliper is now done in a matter of seconds, no need to use a wrench to adjust it... Great!

I go back to my lathe to make a new camshaft adapter : it wasn't perfectly fit on the camshaft, fit created a small cyclic error in the measures.
And since I got myself some POM (PolyOxyMethylene), stock, I make 2 adapters : one for Type 1 camshafts (ID 25 mm), and another for 36hp ones (ID 24 mm). Both have an identical 34mm OD, so I can swap'em without having to adjust the height of the bearing support below.

On the feeler side, the one lift I had modified to install on the caliper's sliding jaw broke on me : that's a very hard steel, without any elasticity ; I did tighten a bit too much and it broke like glass.
So I made a new one, and this time I added ttwo MIG welding spots to prevent any "opening" when tightening the screw. No mo'problems!

I also make another feeler with an old 36HP lift ; same method, angle grinder, MIG weld, drilling/tapping. With this one I'll be able to measure my "Okrasa" 36HP camshaft (Joe Ruiz) : the Type 1 lift would not work on a 36HP camshaft, the cam is too small and the lift ends up touching foundry high spots... Many thanks to Eric "Underdog" Simon who sent me a sacrificial 36HP lift to make this one!
And TADAAAAA!
I also added a length of profile with a "needle" to precisely align the camshafts on the pulley spot, this way the curves in the software will precisely align too, allowing me to accurately compare camshafts.

Software

Now on the computer side, I needed a bit of software to pilot the bench, receive the data back from it and smartly display the results...
So I dove in and wrote CamWerks.
If you're interested, here's the soft, GPL open source license, you can download it and use it for free. Limited support on the other hand... I like you guys, but I ain't got much spare time! icone smiley wink This is a Java application, you'll need at least Java 1.7 on your computer to run it.
Just unzip the archive, and launch "CamWerks.jar", it should run first try... icone smiley smile

If you just wanna have a look at the output from my tests :
The Zip archive will be enough : it contains the files I generated from the different camshafts I had at hand (".cam" files, in the folder "Cam Files") ; even if you don't have a bench connected, you'll still be able to visualize them in the application.

If you wan't to build a bench like mine :
It's a tiny bit more complex, you'll have to :
  1. Flash your arduino :
    1. install the Arduino Serial Command library on your IDE (download here - it's just a handy USB communication library)
    2. Flash your arduino with the "sketch_CamWerks.ino" file (in the Zip archive, in the "Arduino" folder)
  2. Install the RXTX parallel communication library to enable PC/arduino communication (download here).
For those of you who'd like to dive into the code itself, I've put the project on Github : spoiler alert, I wrote a pretty ugly code, just bits and pieces thrown together. Does the work though. icone smiley laugh
The project is available here : https://github.com/ShamWerks/camwerks

Measuring cycles :
Sometimes, there are inaccuracies when measuring : the caliper may seize up a little, or a grain of dust on the cam, whatever... The result being a notch into the curve ; usually not much, a few hundredth at most... But to avoid that I implemented a N-rotations measuring cycle : I do the full-rotation measurements N times, and then take the average of each measure point. It smooths inaccuracies, while making the whole measuring process N times longer. But hey, no hurry, I can wait longer for a better result!

Cams profile view, as seen from the camshaft's axis :
Deducing the profile shape from the measures was tricky, I've had to ask for help to a math researcher friend of mine! Thank you JB for the tea-biscuits-and-math afternoon! icone smiley wink
The result is not perfect, and can only be correct using a flat faced lifter ; it'd be incorrect with a round one (as they are on 36hp), or roller-type lifter.
I also added a curve smoothing algorithm (a simple sliding window average) so that the cams shape would look nice ; long story short, remember this view is provided "as is", don't look too much into it.

Results

Following are the resulting data out of the different camshafts I had laying around...

As you can see, the first tab presents a Detailed Report giving different informations : duration re. lift, maximum lift, valve lift re. rocker ratio, lobe center and overlap.
The second tab show the lift curves of each cam ; the third and last tab is an axis view of the cams profiles.

Last but not least, I've added an option in the software to compare two camshafts. It allows to surimpose the curves from two different camshafts in order to visualize their differences.

L&G R280 Lobe 108°

Here we go, let's put my brand new L&G R280 Lobe 108 camshaft to the bench, and compare the output with the datasheet provided with it! icone smiley smile
Here's what I measured with my bench :
camwerks DIY bench camshaft lift durationcamwerks DIY bench camshaft lift durationcamwerks DIY bench camshaft lift duration
And now, let's compare this with the camshaft datasheet provided by L&G (the intake durations are given by L&G for a 1.27mm lift). Here's how my measures compare with the datasheet :
Datasheet Value
from L&G
CamWerks measured value
Cylinder 1 Cylinder 2
Int. Exh. Int. Exh.
Cam lift 9.19 mm 9.23 mm 9.13 mm 9.17 mm 9.13 mm
1.25 rockers lift 11.49 mm 11.54 mm 11.41 mm 11.46 mm 11.41 mm
1.4 rockers lift 12.87 mm 12.92 mm 12.78 mm 12.84 mm 12.78 mm
Intake duration 242° 242.23° 241.42°
Exhaust duration 242° 239.09° 243.19°
Overlap duration 26° 25.68° 26.15°
Lobe Center 108° 108.6° 108.0°
Not that bad huh??

The biggest delta I found is about exhaust duration : -2.91° / +1.19°, that's a bit much... I'm gonna double check the way I reckon the angle of the "peak" on the cam. Sylvain from Classic-Store (whom did not hesitate spending 20 minutes on the phone with me, while I only sent them a quick technical question... Fantastic customer service, thanks!) told me that it's not uncommon to have 1 to 2 degrees of difference on a camshaft, due to the original pattern/jig wearing off. So, not such a bad result in the end.

I've not yet managed to calculate the opening advance and closing retard... This information depends on the position of the camshaft in relation to the crankshaft (well, actually, the TDC and BDC), and I've not yet managed to integrate this into my formulas! (for now!)
I also do not have the "commercial duration" : well, this value is of no real interest actually, the lift at which it is measured is arbitrarily chosen by manufacturers. Only the durations at 1mm and 1.27mm loft are relevant to compare camshafts to one another... On mine, the advertised 280° duration is reached around 0.48mm lift.

Stock 1600cc camshaft :

camwerks DIY bench camshaft lift duration 1600 vwcamwerks DIY bench camshaft lift duration 1600 vwcamwerks DIY bench camshaft lift duration 1600 vw
Below is a comparison of my measures against the stock VW camshaft specs.
By the way : the stock values shown here are from VW forums (Flat4Ever and TheSamba), I'm not absolutely sure of the source... If you have any better figures, I'd gladly update my table!
Stock VW value CamWerks measured value
Cylinder 1 Cylinder 2
Int. Exh. Int. Exh. Int. Exh.
Cam Lift 0.754 mm 0.724 mm 7.65 mm 7.16 mm 7.34 mm 7.18 mm
Intake duration @0.50 250° 257.04° 246.00°
Exhaust duration @0.50 250° 250.80° 252.80°
Intake duration @1.27 214-218° 216.16° 209.91°
Exhaust duration @1.27 214-218° 215.65° 216.93°
Lobe Center 108° 105.6° 107.4°
Anyway, I'm still within the stock specs! icone smiley wink
Please note that the measured camshat is a used one, therefore the result may somewhat vary.

Comparing stock 1600 with the LG R280 Lobe 108°

camwerks DIY bench camshaft lift duration 1600 vwcamwerks DIY bench camshaft lift duration 1600 vw

Stock 36hp

The cams views doesn't look great towaards the peaks... My original measures probably weren't clean.
camwerks DIY bench camshaft lift duration 36hp vwcamwerks DIY bench camshaft lift duration 36hp vwcamwerks DIY bench camshaft lift duration 36hp vw

36 hp "Okrasa" / Joe Ruiz :

camwerks DIY bench camshaft lift duration 36hp vw okrasacamwerks DIY bench camshaft lift duration 36hp vw okrasacamwerks DIY bench camshaft lift duration 36hp vw okrasa

Comparing stock 36hp and Okrasa version

camwerks DIY bench camshaft lift duration 36hp vw okrasacamwerks DIY bench camshaft lift duration 36hp vw okrasa

Conclusion and future evolutions...

I'm not completely satisfied with the lifters I modified to mount on the caliper... They're not exactly parallel to the camshaft (wel, the angle grinder isn't know to be an accurate tool, right?), so they do not rest perfectly flat on the cam... Gotta do somethin'bout it.
And on the software side, I'd like to add the durations on the cams view...

The results are consistent and can be reproduced (I gaet only up to 3 hundredth of a millimeter difference between to measures) : for a prototype I threw together on the side of my workbench, I'mm really happy with the result! Yet I've no way to know how accurate my measures are : for that I'd need the output of an actual, professional bench, and compare the output with wine... I may have a solution to do just that, I'll let you know. icone smiley laugh

Anyway : keep in mind you should see this bench as a prototype, a "proof of concept", not a finalized project... But it already does the job ; hopefully it will give ideas to some of you! icone smiley laugh
Posted in : Workshop
Displayed 100515 times.
icon permalink
1 2 3 4 5 ...60 61 62 63 64  Next page >>>
© Sham 1996-2017