Posté le 07/10/2020 at 16:30

Workshop 2.0

I had mentioned it last January (actually, already teased about it in January 2018...), but here we are, I've got a new playground!

A bit over two years ago, I moved to a new house, one of the main reasons being a hangar in the back garden... It's legit and on the land registry, but in a sore state, the steel structure being pretty rusty.

It took two years to tun it into a proper workshop. Authorizations, floods, heavy storms, suppliers delivery errors and delays, quarantine, Covid... Let's not go into details, but it's been hell to get stars to align! Well, at least it gave me ample time to refine my organization plans - I've have spent more time on Sketchup than I'm comfortable admitting.

So without further ado, here's the result!
vue panoramique de la structure
One large garage door that allows two vehicles facing out, ready to drive through, and an integrated walk-in door. And a large bay window to bring in light :
A hoist on rail going all the way through the shop :
To store stuff, shelves on the back wall, made to fit my Eurocrate format boxes, and on each side, two large "mezzanines" 70cm and 90cm deep, at a 2.10m height so I can comfortably walk below. And for the most curious of you wondering why the lower shelf doesn't extend all the way to the left : that's so that I can fit in a Westfalia Campervan one day! (that's the definition of wishful thinking right there)
All my machines are not in yet, I still have to install all the electric outlets, and build a proper workbench, I'll slowly get to it step by step. And I use this time to sort out everything I've stored for like 25 years in my old garages...
rail palan soulevant fraiseusetour et fraiseuse se rencontrent
All in all, a bit over 50sqm (540sqft), leaving enough room to walk around the 2 cars behind the garage door, plus a "work zone" for a third car :
Zone de travail pour un véhicule
So that's it! Full disclosure, that's a pretty big dream of mine made true right here... icone smiley laughicone smiley laughicone smiley laugh

A huge thank you to Gérald (and his two sons Kevin et Anthony!) for all the building work!
And big thanks to Bruno for lending me your tow bar to tow the cars between shops! icone smiley wink

Now, I have to transfer all my tools/machines/parts from the old workshop... Maintenant, il n'y a plus qu'à rapatrier tous mes outils/machines/pièces... And find time to actually work on my projects! icone smiley laugh
Posté dans : Workshop
Affiché 9874 fois.
icon permalink
Posté le 05/09/2017 at 06:53

Terrace Project : The Bamboo Containers Strike Back

The Bamboo Containers Strike Back
Since my lovely neighbor decided to cut down all the trees that made my place a small green haven, ("because it looks cleaner this way!... Don't get me started 'bout it), I've had to build another pair of bamboo containers, to add another hedge to my terrace an regain some much needed privacy (not that I don't like my building-across-the-street-neighbors, but you know).

As the containers I built back in 2009 aged pretty well, I'll use basically the same plan.
Sorry, you'll get less pictures this time, the build method is the same ; and the picture quality is average, I only had my dying smartphone at hand,

I begin with a good Sketchup session to get the dimensions right, and find out precisely the materials I need to buy... You can download the sketchup file here if need be.
Looking back, I was only half convinced by my choice of using OSB as a bottom board when I built my first set of containers (even though it's still holding 8 years later). Instead, I'll use this time a 20mm thick solid pine wood board, that look much tougher to me. And affordable, at 12.20€ the 200x60cm board ; I cut them down to the final 138x51cm by clamping the 2 boards together and cut both at the same time with a circular saw.
bacs bambous fabrication DIY bois plansbacs bambous fabrication DIY bois plansbacs bambous fabrication DIY bois plans
Just like the first time, I use 20mm thick weathering boards on the sides. Everything's glued together with PU glue, then screw with stainless, deck screws.
Actually, I changed my mind at the last minute and decided to make the containers 5 boards high instead of 4... So I went back to get some more, but unfortunately they didn't have the same model available, only another slightly wider one... So I had to adapt a bit for my second container, meaning the two of them aren't exctly identical. My OCD self will have to live with that! icone smiley laugh
bacs bambous fabrication DIY bois plansbacs bambous fabrication DIY bois plansbacs bambous fabrication DIY bois plans
Four layers of mahogany tainted wood surface coating (inside and outside), to protect and finish it ; I used a product from the "Syntilor" brand, it's advertised as holding 10 years, we'll see about that. I perfect the water tightness with some silicon caulk, to prevent the wood rotting from water infiltrations on the long term.
bacs bambous fabrication DIY bois plansbacs bambous fabrication DIY bois plans lasurebacs bambous fabrication DIY bois plans lasure
I won't use a tarpaulin inside this time, contrary to what I did on the first containers I built. I'm not convinced about how it handled humidity and roots ; Instead, I brushed two thick layers of tar (from tarp to tar... basically got rid of 1 letter). I stop a few inches below the top of the container for aesthetics reasons...
The product smells really bad, make sure you use a prooer filtering face mask, as well as gloves, security glasses and long sleeves...
Once dry (well, it actually never completely dries), it becomes inert and doesn't smell at all, and provides a watertight layer between the soil and the wood.

The bottom water outlets are, just like last time, plastic air venting grills, caulked to the bottom. Well, bad idea, should have done that before the tar, the silicon reacts badly to the tar, turns yellowish and cracks... Well, it wasn't critical, it'll do. icone smiley smile

To enhance visual privacy (especially while the bamboos are growing), I install a reed screen above the containers :
  • on the right hand side, a metal post is screwed to the container, with an additional diagonal support to help handle the cables tension.
  • on the left hand side, I directly drive 3 stainless, heavy-duty screw-eyes in the last post of my wooden fence.
Finally, I put 3 steel cables in between them posts, and I attach the reed screen on them.
bacs bambous fabrication DIYbacs bambous fabrication DIY goudron étanchéitébacs bambous fabrication DIY brise vue
Ok, now comes the time to fill'em up!

I first put a terracotta tile above each grill to protect them from the weight of the soil above.
Then, I add a 6-7cm layer of small stones, to keep a draining layer, which I perfect with a bag of gardening pozzolan I had laying around.
Then I put a double layer of geotextile over the whole thing, to prevent soil and roots from clogging the drain too quickly.
bacs bambous fabrication DIY terrebacs bambous fabrication DIY driner pierresbacs bambous fabrication DIY geotextile
I finally add some soil (a bit over 5 bags of 60L in each container), plant 6 bamboos, taaa-daaaa!

I install four 12V LED waterproof spot lamps, to blend in with the other 2 containers... And I'm done, just have to wait for the bamboos to grow a bit, and I'm done with the bloody neighbors-across-the-street hassle! icone smiley wink
bacs bambous fabrication DIY spot LED 12Vbacs bambous fabrication DIY spot LED 12Vbacs bambous fabrication DIY spot LED 12V
bacs bambous fabrication DIY resultatbacs bambous fabrication DIY spot LED 12V
Posté dans : Terrace Project
Affiché 234549 fois.
icon permalink
Posté le 05/04/2017 at 21:50

Camwerks : DIY Camshaft measuring bench

DIY Camshaft measuring bench
Those of you who follow ShamWerks on Facebook already got a peek of this thing back in January 2015! Well, it was high time I finally write an article about it, right?

I stumbled upon a picture of a camshaft control bench on Vince/Panelvan's blog (here)...
As I had just bought the high-performance camshaft for my Ghia, the idea of being able to check its actual features (and verify what's given by the part's constructor) made its way ; I was pretty sure I could find a way to make it happen on a budget. And, let's put it mildly, I'm kinda stubborn. icone smiley laugh

Thinking about it, there must be a way to put together a stepper motor, a digital caliper (cheap chinese models have a serial output), and an Arduino to control all of the above and push measures to a PC through USB... Amarite? icone smiley wink

For those of you who don't like reading (aka "TL ; DR Team")

Long story short, after a couple of hours tinkering around, I got myself a functioning bench : here's the result in video : icone smiley laugh
(watch it in full screen HD 720p to be able to read the results)

Sorry for the less-than-average quality of the video, which in addition doesn't show the latest version of the software... I'll try to shoot another one with a better lighting! icone smiley wink
And now, for those who aren't afraid of reading ... Keep scrolling! icone smiley wink

Electronics

I use an arduino as an interface between the bench and the PC, but it can not control the stepper motor directly, it needs a driver ; I found a chinese one, based on a L298, for less than 5€ on dx.com (here).
Beware, if you use the same driver as I did, do not trust the allegedly regulated 5V output on it ; I wanted to use it, but it blew the very first time I tried to ; I ended up with a blown condenser on my arduino... icone smiley meh

Speaking of made-in-China, I also buy a 15€ digital caliper... Well, TBH, if I had to redo it all over again, I'd probably go with a slightly more expensive version : the electronics are identical between versions, but the "mechanical" part can be better. The entry-price ones tend to grip/jam a little bit, which can lead to measure inaccuracies.

Since I don't wanna have a battery that dies on me in the caliper, I use a LM317 to feed it 1.64V, generated from the 5V of the arduino (the original battery on those calipers is 1.5V).
I also add two transistors to step up the signals from the caliper (clock and data) to levels the arduino can read (2.5V minimum). That's kinda overkill, just feeding the caliper with a higher tension may have done the trick, but it didn't look nice to me...

I take appart the caliper in order to solder in the output cable (I use an old land-line phone cable, perfect for that use) ; you can find specific cables that will "plug" into your caliper, but they are more expensive than the caliper itself, to solder it is! I than tie-rap the cable to the caliper to avoid mechanical constraints that would for sure rip the solder apart.

After I validated the circuit on a breadboard (it worked like a charm on the first try, I would have never guessed so!), I transfer it onto a veroboard/strip board.
You'll find down here the schematics of my circuit. Mind you, I have no such pretension to say that this is the right/best way to do it, electronics is by no mean into my comfort zone... But it does work great, feel free to modify/enhance it as you like!
pied coulisse arduino electronique usbpied coulisse arduino electronique usbpied coulisse arduino electronique usb
pied coulisse arduino electronique usb
The Sketchup model is available here (4Mo).
Bill of materials :
  • Reg : LM317 Voltage Regulator
  • T1, T2 : Transistor NPN - BC547B - BC171
  • C1 : condenser 100 nF - 50 V
  • C2 : polarized tantale condenser - 1 µF - 35 V
  • R1: 240 Ω
  • R3: 75 Ω
  • R2, R4, R5, R6: 10 kΩ
Resistors are all 1/2W 5% metal film ones. For your information, R1 and R3 are the ones that "tune" the tension regulator (Reg) so that it outputs 1.64V...

The following web sites helped me a lot while designing my circuit :

Mechanical part

Now for the bench : I need something sturdy enough to get somewhat reliable measures.
I start with a Bosch Rexroth 45x45mm profil, bought on eBay, but in the future I'll buy from Motedis, they are much cheaper and have all the useful accessories...
The grooves let me easily move the mounts/brackets, and the caliper stand, making the whole bench adaptable to camshafts other that Aircooled VW ones.

For the stepper motor, since I've pulled appart my fair share of printers and photocopiers in the past, I've got a stash of spares... So I picked one ; a nice 200 steps motors, that comes with a 1/3 ratio gear/belt set, for a final 600 steps output ; that's 0.6° increments on a full 360° rotation... Not bad!

I lathe down an aluminium adapter for my stepper motor, and another one for the camshaft (with a nylon screw in order not to dent the camshaft), linked through a flexible coupler. This means I'll need a new camshaft adapter for each and every camshaft diameter... I can live with that, but I can imagine a system using a small chuck instead to avoid that.
Then with some aluminium angle scraps, and a few skateboard bearings, I make supports for the camshaft on one side, and for the motor adapter on the other.

Finally, the caliper is fixed on some aluminium angle ; I angle-grind a VW lift (with some finishing done on the lathe) to put it on the jaw of the caliper, in order to have the same kinematics as in the actual engine.
camwerks arbre cames banc mesure DIY métrologiecamwerks arbre cames banc mesure DIY métrologie
camwerks arbre cames banc mesure DIY métrologiecamwerks arbre cames banc mesure DIY métrologiecamwerks arbre cames banc mesure DIY métrologie
The stepper motor output is connected to the camshaft adapter through an aluminium flexible coupler (5€ in Chine, agian...), which forgives the alignment errors. It's a 10mm-10mm coupler, that I bored on the lathe up to 12mm to make it fit my already lathed parts.

Finally, to give the electronics some much needed protection, I fashion a box out of some perspex scrap ; I cut it with a jigsaw, then use a heat gun to bend it... The result might not be aesthetically perfect, but it does the job.
I lathe some plastic stands out of a bit of PVC round to attache the electronics... Yeah, I know, plastic screws would have been a better choice, but I did with what was available in my drawers, ok? icone smiley wink

There, the whole system runs now, even though some points will need attention.
camwerks arbre cames banc mesure DIY métrologiecamwerks arbre cames banc mesure DIY métrologiecamwerks arbre cames banc mesure DIY métrologiecamwerks arbre cames banc mesure DIY métrologie
camwerks arbre cames banc mesure DIY métrologiecamwerks arbre cames banc mesure DIY métrologie
On these pictures you can see the caliper movement return movement powered by rubber bands : it actually did not work that great, the caliper tends to jam, which creates mistakes in the measures.
In the video at the beginning of the article, you can see I now use a weight (a ratchet wrench extension, stuck on a neodyme magnet) ; it works much better like that!

Bench evolution

So, it works, but can be improved... As I was writing this article, a freidn o'mine gave me a good idea to make the caliper movement more user-friendly (thanks aSa!), so here's already a first evolution of the bench!

The idea is to use an eccentric cam clamping lever to lock the caliper in place ; you can find these levers in bike shops, as they are use to lock saddle seats(I got mine from "Decathlon" for 5€ : see here).

So, I order a few more pieces of the same 45x45mm Rexroth profile from Motedis : I ordered 10cm, 15cm and 25cm lengths (for an affordable 1.27€, 1.64€, and 2.38€), as I wasn't sure yet how I'd use it yet. I also ordered a few of those tapped blocks that go into the grooves ; at 0.30€ a piece, I wasn't going to go through the hassle of makin'em myself.

As I modify the caliper's brackets, I make it stronger by using two aluminium angles, to prevent it from bending from side to side.
Bosch Rexroth motedis aluminiumBosch Rexroth motedis aluminium
The result is perfect (see video) : moving the caliper is now done in a matter of seconds, no need to use a wrench to adjust it... Great!

I go back to my lathe to make a new camshaft adapter : it wasn't perfectly fit on the camshaft, fit created a small cyclic error in the measures.
And since I got myself some POM (PolyOxyMethylene), stock, I make 2 adapters : one for Type 1 camshafts (ID 25 mm), and another for 36hp ones (ID 24 mm). Both have an identical 34mm OD, so I can swap'em without having to adjust the height of the bearing support below.

On the feeler side, the one lift I had modified to install on the caliper's sliding jaw broke on me : that's a very hard steel, without any elasticity ; I did tighten a bit too much and it broke like glass.
So I made a new one, and this time I added ttwo MIG welding spots to prevent any "opening" when tightening the screw. No mo'problems!

I also make another feeler with an old 36HP lift ; same method, angle grinder, MIG weld, drilling/tapping. With this one I'll be able to measure my "Okrasa" 36HP camshaft (Joe Ruiz) : the Type 1 lift would not work on a 36HP camshaft, the cam is too small and the lift ends up touching foundry high spots... Many thanks to Eric "Underdog" Simon who sent me a sacrificial 36HP lift to make this one!
And TADAAAAA!
I also added a length of profile with a "needle" to precisely align the camshafts on the pulley spot, this way the curves in the software will precisely align too, allowing me to accurately compare camshafts.

Software

Now on the computer side, I needed a bit of software to pilot the bench, receive the data back from it and smartly display the results...
So I dove in and wrote CamWerks.
If you're interested, here's the soft, GPL open source license, you can download it and use it for free. Limited support on the other hand... I like you guys, but I ain't got much spare time! icone smiley wink This is a Java application, you'll need at least Java 1.7 on your computer to run it.
Just unzip the archive, and launch "CamWerks.jar", it should run first try... icone smiley smile

If you just wanna have a look at the output from my tests :
The Zip archive will be enough : it contains the files I generated from the different camshafts I had at hand (".cam" files, in the folder "Cam Files") ; even if you don't have a bench connected, you'll still be able to visualize them in the application.

If you wan't to build a bench like mine :
It's a tiny bit more complex, you'll have to :
  1. Flash your arduino :
    1. install the Arduino Serial Command library on your IDE (download here - it's just a handy USB communication library)
    2. Flash your arduino with the "sketch_CamWerks.ino" file (in the Zip archive, in the "Arduino" folder)
  2. Install the RXTX parallel communication library to enable PC/arduino communication (download here).
  3. Validation : once your Arduino connected and flashed, from the "Serial Monitor" tool of the IDE, you can try and send the following commands to check the behavior of the Arduino :
    • PING : the Arduino replies PING_ACK.
    • STEP : the Arduino replies STEP_ACK, and the stepper motor turns by one step.
    • MEASURE : the Arduino replies the value of the measure done by the calliper.
    For any other command sent, the Arduino should laconically reply "What?".
For those of you who'd like to dive into the code itself, I've put the project on Github : spoiler alert, I wrote a pretty ugly code, just bits and pieces thrown together. Does the work though. icone smiley laugh
The project is available here : https://github.com/ShamWerks/camwerks

Measuring cycles :
Sometimes, there are inaccuracies when measuring : the caliper may seize up a little, or a grain of dust on the cam, whatever... The result being a notch into the curve ; usually not much, a few hundredth at most... But to avoid that I implemented a N-rotations measuring cycle : I do the full-rotation measurements N times, and then take the average of each measure point. It smooths inaccuracies, while making the whole measuring process N times longer. But hey, no hurry, I can wait longer for a better result!

Cams profile view, as seen from the camshaft's axis :
Deducing the profile shape from the measures was tricky, I've had to ask for help to a math researcher friend of mine! Thank you JB for the tea-biscuits-and-math afternoon! icone smiley wink
The result is not perfect, and can only be correct using a flat faced lifter ; it'd be incorrect with a round one (as they are on 36hp), or roller-type lifter.
I also added a curve smoothing algorithm (a simple sliding window average) so that the cams shape would look nice ; long story short, remember this view is provided "as is", don't look too much into it.

Versions history :
  • 2017-04-05 : version 0.1 : first version released.
  • 2019-11-27 : version 0.2 : update to fix a bug that made the measuring process crash after just 1 step of the motor (when trying to round a double variable that turned out to have value set to "infinity" for some reason - gotta have to find out the root cause at some point)

Results

Following are the resulting data out of the different camshafts I had laying around...

As you can see, the first tab presents a Detailed Report giving different informations : duration re. lift, maximum lift, valve lift re. rocker ratio, lobe center and overlap.
The second tab show the lift curves of each cam ; the third and last tab is an axis view of the cams profiles.

Last but not least, I've added an option in the software to compare two camshafts. It allows to surimpose the curves from two different camshafts in order to visualize their differences.

L&G R280 Lobe 108°

Here we go, let's put my brand new L&G R280 Lobe 108 camshaft to the bench, and compare the output with the datasheet provided with it! icone smiley smile
Here's what I measured with my bench :
camwerks banc DIY arbre cames mesure levée duréecamwerks banc DIY arbre cames mesure levée duréecamwerks banc DIY arbre cames mesure levée durée
And now, let's compare this with the camshaft datasheet provided by L&G (the intake durations are given by L&G for a 1.27mm lift). Here's how my measures compare with the datasheet :
Datasheet Value
from L&G
CamWerks measured value
Cylinder 1 Cylinder 2
Int. Exh. Int. Exh.
Cam lift 9.19 mm 9.23 mm 9.13 mm 9.17 mm 9.13 mm
1.25 rockers lift 11.49 mm 11.54 mm 11.41 mm 11.46 mm 11.41 mm
1.4 rockers lift 12.87 mm 12.92 mm 12.78 mm 12.84 mm 12.78 mm
Intake duration 242° 242.23° 241.42°
Exhaust duration 242° 239.09° 243.19°
Overlap duration 26° 25.68° 26.15°
Lobe Center 108° 108.6° 108.0°
Not that bad huh??

The biggest delta I found is about exhaust duration : -2.91° / +1.19°, that's a bit much... I'm gonna double check the way I reckon the angle of the "peak" on the cam. Sylvain from Classic-Store (whom did not hesitate spending 20 minutes on the phone with me, while I only sent them a quick technical question... Fantastic customer service, thanks!) told me that it's not uncommon to have 1 to 2 degrees of difference on a camshaft, due to the original pattern/jig wearing off. So, not such a bad result in the end.

I've not yet managed to calculate the opening advance and closing retard... This information depends on the position of the camshaft in relation to the crankshaft (well, actually, the TDC and BDC), and I've not yet managed to integrate this into my formulas! (for now!)
I also do not have the "commercial duration" : well, this value is of no real interest actually, the lift at which it is measured is arbitrarily chosen by manufacturers. Only the durations at 1mm and 1.27mm loft are relevant to compare camshafts to one another... On mine, the advertised 280° duration is reached around 0.48mm lift.

Stock 1600cc camshaft :

camwerks banc DIY arbre cames mesure levée durée 1600 vwcamwerks banc DIY arbre cames mesure levée durée 1600 vwcamwerks banc DIY arbre cames mesure levée durée 1600 vw
Below is a comparison of my measures against the stock VW camshaft specs.
By the way : the stock values shown here are from VW forums (Flat4Ever and TheSamba), I'm not absolutely sure of the source... If you have any better figures, I'd gladly update my table!
Stock VW value CamWerks measured value
Cylinder 1 Cylinder 2
Int. Exh. Int. Exh. Int. Exh.
Cam Lift 0.754 mm 0.724 mm 7.65 mm 7.16 mm 7.34 mm 7.18 mm
Intake duration @0.50 250° 257.04° 246.00°
Exhaust duration @0.50 250° 250.80° 252.80°
Intake duration @1.27 214-218° 216.16° 209.91°
Exhaust duration @1.27 214-218° 215.65° 216.93°
Lobe Center 108° 105.6° 107.4°
Anyway, I'm still within the stock specs! icone smiley wink
Please note that the measured camshat is a used one, therefore the result may somewhat vary.

Comparing stock 1600 with the LG R280 Lobe 108°

camwerks banc DIY arbre cames mesure levée durée 1600 vwcamwerks banc DIY arbre cames mesure levée durée 1600 vw

Stock 36hp

The cams views doesn't look great towaards the peaks... My original measures probably weren't clean.
camwerks banc DIY arbre cames mesure levée durée vw pied moulécamwerks banc DIY arbre cames mesure levée durée vw pied moulécamwerks banc DIY arbre cames mesure levée durée vw pied moulé

36 hp "Okrasa" / Joe Ruiz :

camwerks banc DIY arbre cames mesure levée durée vw pied moulé okrasacamwerks banc DIY arbre cames mesure levée durée vw pied moulé okrasacamwerks banc DIY arbre cames mesure levée durée vw pied moulé okrasa

Comparing stock 36hp and Okrasa version

camwerks banc DIY arbre cames mesure levée durée vw pied moulé okrasacamwerks banc DIY arbre cames mesure levée durée vw pied moulé okrasa

Conclusion and future evolutions...

I'm not completely satisfied with the lifters I modified to mount on the caliper... They're not exactly parallel to the camshaft (wel, the angle grinder isn't know to be an accurate tool, right?), so they do not rest perfectly flat on the cam... Gotta do somethin'bout it.
And on the software side, I'd like to add the durations on the cams view...

The results are consistent and can be reproduced (I gaet only up to 3 hundredth of a millimeter difference between to measures) : for a prototype I threw together on the side of my workbench, I'mm really happy with the result! Yet I've no way to know how accurate my measures are : for that I'd need the output of an actual, professional bench, and compare the output with wine... I may have a solution to do just that, I'll let you know. icone smiley laugh

Anyway : keep in mind you should see this bench as a prototype, a "proof of concept", not a finalized project... But it already does the job ; hopefully it will give ideas to some of you! icone smiley laugh
Posté dans : Workshop
Affiché 175991 fois.
icon permalink
Posté le 16/04/2016 at 10:36

Crouzet-Valence FC100 milling machine

It's been 4 years since I've gotten my lathe, so as one can expect, I've been wanting a milling machine for quite a while now... (and the hours spent on the usinages.com forum have not helped)

But the thing is, in my area, these kind of machines are scarce ; unlinke in northern or eastern France, areas that have and actual industrial past, and where you can find second-hand machine adds regularly.
But the main problem remain the sheer size of my workshop : it's really small (that's what she said), therefore I need a small milling machine if I ever want to fit it in... Ideally a Deckel FP1 (beautiful but so expensive I'll never be able to afford it), or a small Graffenstaden, a WGM... Or if I accept to go with shorter travels, a Schaublin (overpriced), a Crouzet...

Anywho, I kept an eye on adds in the area (because when it comes to transporting 500kg of cast iron, it better not be too far!), without putting too much hope in it...

Untill last July when one of my alerts popped up : years of patience finally paid as this appeared on LeBonCoin (our CraigsList) :
Fraiseuse Crouzet-Valence FC100Fraiseuse Crouzet-Valence FC100Fraiseuse Crouzet-Valence FC100
A cute little Crouzet-Valence FC100, (same band as my lathe), just 30 minutes away from my place!
If you're curious, here's the documentation.

I first quickly check in Sketchup that it will actually fit in my workshop, and I gave a ring to the seller, who told me he already had several calls (he was actually surprised) : first come, first served! So I jumped into my car and went to see the beast in oder to lock the sale!
Fraiseuse Crouzet-Valence FC100Fraiseuse Crouzet-Valence FC100
Negative points :
  • Limited travels : X 220mm / Y 100mm / Z 330mm. That seriously limits what I'll be able to do with it. Still good to learn, and enough to work on cylinder heads!
  • It's missing the X/Y handwheels, and Z one has its handle broken. Shouldn't be too difficult to find new ones.
  • Rare W20 attachment, won't be easy no find tooling.
  • No automatic feed (not because it's been remove, as it's frequently the case, but because the machine was ordered specifically like that), but I don't really care since I have something in the back of my mind. icone smiley wink
Positive points :
  • The FC100 is a good machine, rigid and heavy.
  • It's in a pretty good state, with almost no play : it quite obviously has not worked a lot. I've been told it was originally bought by the Aérospatiale (they have an important complex not far from here), and has only ever been used for smell jobs.
  • It has the universal tilting head.
  • As much as the W20 attachment is not ideal, at least it's the same as on my lathe, therefore I already have a few collets to fit in!
  • But mainly : the asked price! For 300€, there was no way I'd miss it! icone smiley laugh

Long story short, I transport it back to the workshop on July 29th : I had to transport the machine laying on its back, as my garage entrance isn't high enough to do otherwise... Not perfect, but I had no other choice. And it looks like the rental Citroën Berlingo was made specifically for that machine, as it perfectly fits in!

Loading the machine in the truck was just a 5 minutes job at the seller's place thanks to his forklift... But unloading it was a whole other story! Even with a borrowed workshop crane from a nearby mechanics, it was 2 hours of heavy lifting! Many thanks for lending me the crane, and a 1000 thank yous to Xav'Yeah, my partner in crime whom I manage to involve it these hassles! Ain't moving 450kg of cast iron in an overheated 1 car garage a fun task?

The machine will end up spending the next 3 months on its back, until I manage to get my own crane (I had a lot of delivery problems with this one) and free up some time to deal with it. So finally, November 8th, the machine is finally standing up! More heavy lifting, done on my own this time, but it's finally resting where it belongs!
Fraiseuse Crouzet-Valence FC100Fraiseuse Crouzet-Valence FC100Fraiseuse Crouzet-Valence FC100
Fraiseuse Crouzet-Valence FC100Fraiseuse Crouzet-Valence FC100Fraiseuse Crouzet-Valence FC100
Fraiseuse Crouzet-Valence FC100
Now I need to find some spare time to take care of that old lady. I don't plan on doing a complete restoration, as it's in a relatively good shape already, a good clean up should be enough (well, it'd look great in the same green color as the lathe, though...). And why not a few step motors to pilot the whole thing... icone smiley laughicone smiley laughicone smiley laugh
Posté dans : Workshop
Affiché 95317 fois.
icon permalink
Posté le 18/12/2014 at 23:07

Workshop Update : Sambre-et-Meuse Vise

When I build my workbench three years ago, I needed a vise, and resolved myself into buying one from the hardware store, a chinese thingy made out of extruded shitonium ©.

Poorly cast iron, with many casting defects filled with bondo, with a nice paint to cover the crime... As you can guess, all of this is going away the first time you use a blowtorch or a hammer.
The "mechanical" part is no better, the screw is made of lower-grade steel (the kind of steel used to shoe rabbits, as we say in french), the nut is tiny, secured only with a 4mm screw that broke on first use...
Pictures are worth a thousand words they say, here's what the beast looks like after only 3 years of occasional, osft & gentle usage. I does not even work anymore, the threading in the nut is mostly gone, one as to apply quite a lot of torque to actually tighten the vise, and if you tight it a too manly, the threads just "skip".. Pure bliss.
But this was BEFORE. icone smiley laugh

Found on LeBonCoin (our french equivalent of Craigslist), for merely the same price I paid for the shity chinese thing, a beautifully restored "Sambre et Meuse"!
For those of you who don't know about that brand, Sambre et Meuse is a steelworks company, founded in the early 40's, that produced this kind of tools until 2009 (when they sold that branch of their activity to Dolex). The company still exists today, their main activity being large steel castings for train industry.
These vises are well known upon machinists for being sor of the "Rolls" of them all, dating back from an era when we had a flourishing industry in France, producing high quality stuff...

My new vise ain't perfect, with a few saw marks on the jaws, but it's very clean for a tool that's probably around 40 years old. It's completely made out of steel (all 14kg of it), and turns with the slightest push of a finger!

Its previous owner lives more than 2 hours drving from my place, so thank you Thierry for picking it up for me while I was arranging logistics! icone smiley wink
Anyway, my point is : if on a garage sale you were ever to find a "Sambre et Meuse", make sure you don't miss that oportunity ; they don't make'em like that anymore!
Posté dans : Workshop
Affiché 128068 fois.
icon permalink
1 2 3 4 5 6 7 8 9  Next page >>>
© Sham 1996-2020